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DOUBLE LUNAR SWINGBY TRAJECTORIES TO NEAR-
GEOSTATIONARY ORBIT 

Stephen West,1 John Carrico,2 and Mike Loucks3 

Lunar gravity assists can be used to reduce inclination and raise perigee radius to 

transfer a spacecraft from lunar rideshare launch to near-geostationary orbit. Dou-

ble lunar swingby orbits relax the targeting constraints on the first lunar swingby 

and increase compatibility with lunar rideshare opportunities. Both short- and 

long-period solutions exist, offering a trade-off between time-of-flight and maxi-

mum spacecraft-to-Earth range. The short-period orbits have the added complex-

ity of a perigee maneuver below GEO and within the Outer Van Allen Belts. 

Time-of-flight from injection to first near-geostationary perigee ranges from ~40 

days (short-period) to ~75-105 days (long-period). These transfers require 

~1,000-1,100 m/s for orbit lowering and an additional 20-90 m/s for cislunar ma-

neuvering. 

INTRODUCTION 

Interest in civil, defense, and commercial missions in the region of space beyond geostationary 

orbit (GEO) has increased dramatically in recent years. Frequent launches to high-energy orbits 

offer opportunities for small spacecraft rideshare to cislunar or lunar orbit. One potential applica-

tion of these lunar rideshare launches is spacecraft bound for GEO by way of a lunar swingby. With 

the increasing scarcity of geostationary transfer orbit (GTO) or direct to GEO launches, lunar 

rideshares may become a more accessible option.  

A lunar rideshare launch typically injects the spacecraft into an orbit with an inclination of ap-

proximately 28.5° and apogee near lunar orbit radius. To return to near-GEO, a spacecraft must 

simultaneously reduce inclination and raise perigee. Given the lunar encounter targeted by the 

rideshare launch, the spacecraft can use lunar gravity assists (LGrAs) to target the desired opera-

tional orbit. The range of possible gravity assist geometries is determined by the launch conditions. 

As a secondary payload, the spacecraft must be able to accommodate variations in the rideshare 

launch targets as they evolve for the primary mission.  Space Exploration Engineering (SEE) has 

developed a range of mission trajectories robust to variations in the lunar launch targets.  

To accomplish the return to GEO with a single gravity assist, the lunar encounter must occur 

within a few degrees of the Earth’s equatorial plane such that the post-swing-by orbit has inclination 

near 0°. Since the rideshare launch is delivering a lunar lander as the primary payload, the initial 

lunar encounter, even if targeted near the Earth’s equatorial plane, does not result in a suitable post-
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swing-by transfer orbit. As such, after separation from the upper-stage of the launch vehicle, the 

spacecraft performs a mid-course correction (MCC) maneuver to retarget the lunar encounter to 

achieve the desired post-swing-by transfer orbit. Policastri et al previously described a set of refer-

ence trajectories employing a single swing-by for representative launches targeting the lunar en-

counter near the Earth’s equatorial plane1.  

Constraints imposed by the primary lunar lander payload (e.g. time-of-flight, lighting conditions 

at the intended landing site) may require that the launch target a lunar encounter significantly above 

or below the Earth’s equatorial plane. In this case, the MCC required to target the equatorial lunar 

swing-by becomes infeasibly large (100s m/s). As an alternative, the spacecraft can perform mul-

tiple lunar gravity assists to setup the required lunar encounter geometry and achieve the desired 

final transfer orbit. Since the first swingby only needs to target the appropriate geometry at the 

second swingby, the required deviation from the initial post-launch trajectory is small and the MCC 

magnitude remains feasible (10s m/s). Given a set of representative lunar rideshare launches in 

April and May 2024 (that do not target the lunar encounter near the equatorial plane), SEE devel-

oped double lunar swingby trajectories that return the spacecraft to GEO graveyard orbit.  

BACKGROUND 

The concept of using a lunar swing-by to return a spacecraft to Earth was the foundation for the 

Apollo program’s free-return trajectories2. The analysis approach described by Battin and Miller 

generates two Earth-centered two-body orbits that contain the launch and desired landing site, re-

spectively. These two-body orbits are iteratively adjusted until the Moon-centered trajectory 

through the lunar sphere of influence is continuous.  

Sun synchronous double lunar swingby orbits have enabled missions studying Earth’s geomag-

netic tail. In this application, a pair of lunar gravity assists is selected with multiple revolutions in 

a smaller transfer orbit connecting the two lunar encounters. Dunham and Davis3 catalog 43 of 

these orbits with a wide range of orbit periods. They describe a method of computing double lunar 

swingby orbits in a simplified dynamical model using a combination of a broad search algorithm 

to identify potential solutions and a Newton-Rhapson iterator to generate continuous solutions from 

an initial guess. Carrico et al4 describe a method for generating similar orbits that uses sequential 

single-shooting differential correctors to converge a solution in a full-force model. This method 

was employed for both the WIND and Geotail missions.  

Double lunar swingby orbits have also enabled “rescue” of satellites stranded in their initial 

geostationary transfer orbit (GTO). The AsiaSat-3 satellite performed the first commercial lunar 

swingby while flying this type of trajectory after a launch failure left it in GTO with an unusable 

inclination of 51.6°. By first raising its apogee to near lunar orbit radius, AsiaSat-3 (then renamed 

HGS-1) was able to perform two lunar gravity assists to reduce inclination and raise perigee5. Fur-

ther orbit lowering captured the satellite into its intended geostationary orbit.  

This type of rescue trajectory was studied but not implemented for other stranded GEO satellites 

including AMC-14 and Arabsat 20. Figure 1 shows a potential trajectory for the AMC-14 recovery 

developed by Carrico and Loucks.  
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Figure 1. AMC-14 rescue trajectory in the Earth Inertial frame 

After the first lunar encounter, AMC-14 would have performed two perigee maneuvers and an 

apogee maneuver to target the second gravity assist. Figure 2 shows AMC-14’s altitude (above a 

mean spherical Earth) from initial orbit raising to the first GEO-altitude perigee. The black dashed 

line corresponds to GEO altitude and the gray dotted line is approximately lunar orbit distance. 

 

Figure 2. AMC-14 altitude from orbit raising to GEO-altitude 

Figure 3 shows the AMC-14 recovery trajectory in three reference frames. From the Earth-

Moon rotating pulsating frame (center panel), the two lunar gravity assists are readily apparent.  

 

Figure 3. AMC-14 recovery trajectory shown in Earth inertial (left), Earth-Moon rotat-

ing pulsating (center), and Earth-Sun rotating pulsating (right) frames 
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MISSION REQUIREMENTS AND CONSTRAINTS 

As a secondary payload launching with a commercial lunar lander, the spacecraft cannot impose 

requirements on the launch targets. This work uses a set of representative injection states for the 

April and May 2024 launch periods. These states target a lunar encounter that enables the primary 

lander payload to capture into orbit and target its landing site. Unlike the GEO rescue double lunar 

swingby orbits, the lunar rideshare spacecraft does not need further orbit raising after separation. 

The MCC maneuver diverts the spacecraft from the injection state to its desired trajectory.  

To ensure safe disposal, the final lunar swingby targets the GEO graveyard as its destination. 

Table 1 summarizes the GEO graveyard definition used for this analysis. The perigee radius and 

eccentricity are selected to be consistent with the Inter-Agency Space Debris Coordination Com-

mittee Space Debris Guidelines.6 No RAAN is specified to avoid an over-constrained targeting 

problem. Additionally, since the GEO graveyard orbit is above GEO, the spacecraft will drift in the 

negative in-track direction relative to GEO. If the ultimate destination is a specific GEO slot, the 

spacecraft can passively drift to this location before inserting into a final location with (comparably) 

small maneuvers. 

Table 1. GEO graveyard orbit requirements 

Orbital Elements Value Tolerance 

Perigee Radius 𝑟𝑝 42,464 km ±10 km 

Eccentricity 𝑒 0 0.003 

Inclination 𝑖 0° ±1° 

RAAN Ω Unconstrained N/A 

 

SEE developed double lunar swingby orbits that meet these orbit requirements. All trajectories 

are integrated in AGI’s Systems Tool Kit (STK) using a full force model with Earth 21x21 gravity, 

a point-mass Moon, and representative solar radiation pressure. For trajectory design, STK’s As-

trogator module7 supports multiple differential corrector profiles and a robust system for computing 

orbit parameters and geometry. The following sections present these reference trajectories and sum-

marize key results for launch periods in April and May 2024. 

SHORT-PERIOD SOLUTIONS 

The first family of double lunar swingby orbits are “short period” orbits where the post-LGrA1 

(lunar gravity assist 1) orbit period is approximately 14-20 days. These solutions are analogous to 

the AMC-14 trajectory described above. At the first post-LGrA1 perigee, the spacecraft performs 

a swingby phasing maneuver (SPM) to target LGrA2. The SPM is an energy management maneu-

ver with thrust along the negative velocity direction. After the SPM, the spacecraft completes one 

or more revolutions in the phasing orbit before LGrA2. At the first post-LGrA2 perigee, the space-

craft begins a sequence of period reduction maneuver (PRM) to insert into the GEO graveyard.  

Targeting Configuration 

The short-period solutions use a pair of nested differential correctors for targeting. The inner 

differential corrector varies the VNC components of the MCC maneuver to achieve a desired target 

point on the lunar B-plane8 at LGrA1. B-plane targets are interchangeably formulated either as 
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Cartesian coordinates (�⃗� ⋅ �̂�, �⃗� ⋅ �̂�) or a magnitude-direction pair (|�⃗� |, 𝐵𝜃). Table 2 summarizes 

this differential corrector configuration. 

Table 2. Inner differential corrector configuration 

Controls Constraints 

MCC Δ𝑉𝑋
𝑉𝑁𝐶 �⃗� ⋅ �̂� or  |�⃗� | at LGrA1 

MCC Δ𝑉𝑌
𝑉𝑁𝐶 �⃗� ⋅ �̂� or  𝐵𝜃 at LGrA1 

MCC Δ𝑉𝑍
𝑉𝑁𝐶  

 

The outer differential corrector varies the LGrA1 B-plane targets as well as the SPM magnitude. 

The solution is successively refined over three iterations with slightly different targeting parame-

ters. The first run seeks to make the orbit equatorial at the first post-LGrA2 perigee. To avoid 

constraining RAAN while driving inclination to 0°, the target sequence evaluates the components 

of the orbit normal vector in the Earth TOD frame. When the X and Y components of the orbit 

normal are 0, the orbit is equatorial. The second run adds a radius of perigee constraint. The third 

and final run evaluates the orbit plane and radius of perigee constraints at the end of the orbit low-

ering phase rather than the first post-LGrA2 perigee. Table 3 shows the outer differential corrector 

configuration. For each iteration, the header indicates where in the orbit the constraints are evalu-

ated. 

Table 3. Outer differential corrector configuration for three successive iterations 

Controls 

 Constraints 

 Iteration: 1 2 3 

 Evaluation: Post-LGrA2 perigee Post-LGrA2 perigee Post-PRMs 

SPM Δ𝑉𝑋
𝑉𝑁𝐶   �̂�𝑋

𝑇𝑂𝐷 �̂�𝑋
𝑇𝑂𝐷 �̂�𝑋

𝑇𝑂𝐷 

�⃗� ⋅ �̂� or  |�⃗� | at LGrA1   �̂�𝑌
𝑇𝑂𝐷 �̂�𝑌

𝑇𝑂𝐷 �̂�𝑌
𝑇𝑂𝐷 

�⃗� ⋅ �̂� or  𝐵𝜃 at LGrA1    |𝑟 | |𝑟 | 

 

For the final launch opportunity in the May launch period, it was not possible to converge the 

trajectory using ballistic lunar swingbys. For the 15-May launch date only, a return powered fly-by 

(RPF) maneuver was added to LGrA2. This maneuver had thrust constrained along the velocity 

direction and was included as a control for the final two iterations of the outer differential corrector. 

Reference Trajectories 

There are three launch opportunities in both the April and May launch period. Figure 4 shows 

three views of the short-period double lunar swingby orbits with an April launch in the Earth iner-

tial, Earth-Moon rotating-pulsating, and Earth-Sun rotating-pulsating frame. Tick marks are placed 

every 24 hours. A key distinction of the April-launched short-period orbits is the super-lunar apo-

gee after LGrA1, clearly shown in the inertial and Earth-Sun rotating frames. 
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Figure 4. Short period double lunar swingby trajectory for April launch shown in Earth 

inertial (left), Earth-Moon rotating pulsating (center), and Earth-Sun rotating pulsating 

(right) frames 

The lunar encounter geometry is quite different between LGrA1 and LGrA2. LGrA1 occurs at 

an altitude between ~5,000-10,000 km while LGrA2 is more distant at ~30,000 km. Figure 5 shows 

the lunar encounter geometry in the Moon True-of-Date (TOD) frame. The black circle is scaled to 

mean lunar radius. Since LGrA2 is nearly a polar swingby, the right panel shows the Moon TOD 

Y-Z plane as opposed to the Moon TOD X-Y plane shown on the left.  

 

Figure 5. Short period LGrA1 (left) and LGrA2 (right) lunar encounters for April 

launch shown in Moon TOD frame 

The short period orbits with a May launch return directly to perigee after LGrA1 and, as a result, 

have one less apogee in the phasing orbit. Figure 6 shows three views of the May-launch short 

period orbits with tick marks every 24 hours. The “missing” apogee is apparent when comparing 

the middle panel of Figure 6 with the middle panel of Figure 4. 
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Figure 6. Short period double lunar swingby trajectory for May launch shown in Earth 

inertial (left), Earth-Moon rotating pulsating (center), and Earth-Sun rotating pulsating 

(right) frames 

The lunar encounter geometry for short period orbits with a May launch is similar to the April 

launch orbits. LGrA1 remains between ~5,000-10,000 km while LGrA2 is more distant at ~40,000-

60,000 km. Figure 7 shows the lunar encounter in the Moon TOD frame. As before, the right panel 

shows the Y-Z plane while the left panel shows the X-Y plane. LGrA2 for the May-launched orbits 

is still polar, but to a lesser degree than the for the April-launched orbits.  

 

Figure 7. Short period LGrA1 (left) and LGrA2 (right) lunar encounters for May launch 

shown in Moon TOD frame 

Figure 8 shows the altitude profile for both sets of short period double lunar swingby orbits. 

Altitude is computed to a mean Earth sphere with a radius of 6378.135 km. The altitude profiles 

clearly show the difference between the April and May launch opportunities. The April-launched 

orbits continue to apogee after LGrA1 (approximately L+7 days) whereas the May-launched orbits 

return directly to perigee after LGrA1 (approximately L+5 days).  
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Figure 8. Altitude above Earth mean sphere for short period trajectories after launch in 

April (top) and May (bottom) 

Figure 8 indicates that both perigees in the phasing orbit occur below the GEO belt (shown by 

the black dashed line). In all six cases, this places the SPM within the Outer Van Allen Belt. This 

additional passage through the Van Allen Belt increases the total radiation exposure for the space-

craft. The need to perform a maneuver in this regime could also preclude some common radiation 

mitigation approaches (e.g. minimize spacecraft activity, power off sensitive systems). Addition-

ally, sub-GEO perigees increase the complexity of conjunction analysis and create potential inter-

ference with active GEO satellites. To mitigate these concerns, the team sought a set of solutions 

that did not require a perigee maneuver below GEO.  

LONG-PERIOD SOLUTIONS 

The second family of double lunar swingby orbits are “long-period” orbits where the post-

LGrA1 orbit has a period of approximately 50-80 days. The long-period orbits complete less than 

one revolution in the phasing orbit and approach the vicinity of the Sun-Earth L2 libration point. 

The SPM is relocated from perigee (in the short-period orbits) to this high-altitude apogee. Taking 

advantage of the altitude, a relatively small SPM can target the required LGrA2 geometry. All three 

components of the SPM can be varied to achieve the LGrA2 targets.   

Targeting Configuration 

Like the short-period orbits, the long-period orbits use a pair of nested differential correctors. 

The inner differential corrector is identical to the short-period inner targets and varies the VNC 

components of the MCC to achieve LGrA1 B-plane targets. Table 2 describes the configuration of 

this inner differential corrector. The outer differential corrector was configured slightly differently 

for each trajectory in the long-period family but follows similar logic to that described in Table 3 

for the short period orbits. The first two or three iterations are a coarse targeting algorithm to ensure 
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the trajectory returns to the vicinity of the Moon after apogee. For these coarse differential correc-

tors, fewer controls are used (e.g. only LGrA1 B-plane targets) to ensure the problem is not under-

constrained. After generating an initial guess, successive profiles target the final orbit state using a 

combination of LGrA1 B-plane targets and SPM VNC components. Given three constraints (�̂�𝑋
𝑇𝑂𝐷,  

�̂�𝑌
𝑇𝑂𝐷, |𝑟 |), differential correctors were generally limited to three controls, chosen from the five 

available. The trajectory designer selects which controls to use based on feedback from the differ-

ential correctors.  

Reference Trajectories 

Figure 9 shows the long-period double lunar swingby orbits for April launch opportunities in 

the Earth inertial, Earth-Moon rotating-pulsating, and Earth-Sun rotating-pulsating frame. Given 

the much longer orbit period, tick marks are placed every 120 hours (5 days). Comparing these 

trajectories to the short-period orbits, the significantly larger semi-major axis of the phasing orbit 

is apparent. The Earth-Sun rotating frame clearly shows the apogee approaching the vicinity of 

Sun-Earth L2 (~1.5e6 km).   

 

Figure 9. Long period double lunar swingby trajectory for April launch shown in Earth 

inertial (left), Earth-Moon rotating pulsating (center), and Earth-Sun rotating pulsating 

(right) frames 

For the long-period orbits with an April launch, LGrA1 is a close fly-by at an altitude below 

5,000 km. LGrA2 is more distant, occurring between 10,000-20,000 km. Figure 10Figure 5 shows 

the lunar encounter geometry in the Moon True-of-Date (TOD) X-Y plane. The black circle is 

scaled to mean lunar radius.  
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Figure 10. Long period LGrA1 (left) and LGrA2 (right) lunar encounters for April 

launch shown in Moon TOD frame 

Figure 11 shows three views of the long-period double lunar swingby orbits for May launch 

opportunities with tick marks every 120 hours (5 days). The May-launched orbits have shorter 

phasing orbits and do not pass as close to Sun-Earth L2 as the April-launched orbits.  

 

Figure 11. Long period double lunar swingby trajectories for May launch shown in 

Earth inertial (left), Earth-Moon rotating pulsating (center), and Earth-Sun rotating pulsat-

ing (right) frames 

Figure 12 shows the lunar encounters for May-launched long-period LGrA1 and LGrA2. The 

fly-by geometry for the May launch opportunities is very similar to the April geometry. 
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Figure 12. Long period LGrA1 (left) and LGrA2 (right) lunar encounters for April 

launch shown in Moon TOD frame 

Figure 13 shows the altitude profile for both sets of long period double lunar swingby orbits. 

Altitude is computed to a mean Earth sphere with a radius of 6378.135 km. In Figure 13, the initial 

epoch for both upper and lower panels is the same (unlike other altitude plots in this work, which 

reference the initial epoch to the launch or injection time for each trajectory, as applicable). This 

shows that both sets of long-period orbits target the same lunar encounter for LGrA2. The April 

launch orbits reach LGrA2 after ~105 days while the May launch orbits require only ~75 days.  

 

Figure 13. Altitude above Earth mean sphere for short period trajectories after launch in 

April (top) and May (bottom) 
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Both sets of long-period orbits remain below 1.5M km and perform all inbound maneuvers 

above the GEO belt. These positive attributes come at the cost of an increased time-of-flight.  

COMPARISON TO SINGLE SWINGBY SOLUTIONS 

The short- and long-period families of double lunar swingby orbits demonstrate that two lunar 

gravity assists can be used to transfer from a lunar rideshare launch to GEO graveyard. Overall, the 

double lunar swingby orbits satisfy the mission requirements at the expense of additional complex-

ity. Use of these orbits is motivated by the rideshare launch not injecting the spacecraft on a trajec-

tory that encounters the Moon approximately 2° below the equatorial plane. Figure 14 shows the 

angle to the equatorial plane at the lunar swingby for a representative set of single lunar swingby 

orbits. Should this condition not be met, a single-swingby orbit is not feasible.  

 

Figure 14. Angle between spacecraft and equatorial plane at LGrA for single lunar 

swingby (1LS) orbits 

To evaluate the relative merit of the double lunar swingby (2LS) orbits as compared to the single 

lunar swingby (1LS) orbits, we generate a set of 1LS orbits launching in the same April and May 

periods.  

Single Swingby Reference Solutions 

The simplest 1LS trajectory requires no deterministic maneuvers and directly targets the re-

quired LGrA from launch. Since the representative rideshare injection states do not encounter the 

Moon at the required point in its orbit, the 1LS reference solutions assume a targeted launch. This 

assumption is not applicable to rideshare missions but does generate the most optimistic 1LS orbits 

for comparison purposes. Policastri et al describe the process for designing 1LS orbits originating 

from a rideshare launch and identify two families of 1LS orbits: exterior and interior.1 The exterior 

family has a post-LGrA apogee while the interior family proceeds directly to perigee. In this aspect, 

the exterior and interior 1LS families are comparable to the April and May short-period 2LS fami-

lies.  

To target 1LS orbits from a dedicated launch, a single differential corrector is used with multiple 

profiles to successively refine the trajectory to achieve the desired final orbit state. The initial state 

for these reference trajectories results from a simple launch-coast-burn model. Cape Canaveral is 

assumed to be the launch site and the parking orbit inclination is set to 28.5°. An initial guess for 
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the 1LS orbit is generated by first determining a trans-lunar injection (TLI) burn magnitude and 

parking orbit coast period that place apogee near the Moon. Next, launch epoch, coast duration, 

and TLI magnitude are varied first to hit a manually selected LGrA B-plane target and finally to 

achieve the required orbit plane and perigee radius.  

Figure 15 and Figure 16 show three views of the exterior and interior 1LS orbits, respectively 

for both the April and May launch periods. The exterior orbits have a super-lunar apogee after the 

LGrA whereas the interior orbits proceed directly to perigee.  

 

Figure 15. Exterior single lunar swingby trajectories shown in Earth inertial (left), 

Earth-Moon rotating pulsating (center), and Earth-Sun rotating pulsating (right) frames 

 

Figure 16. Interior single lunar swingby trajectories shown in Earth inertial (left), Earth-

Moon rotating pulsating (center), and Earth-Sun rotating pulsating (right) frames 

Figure 17 shows the LGrA geometry for both exterior and interior orbits. As compared to the 

2LS orbit, the 1LS LGrA span a much wider range of altitudes, from <1,000-20,000 km. Figure 18 

shows the altitude profile for the exterior and interior 1LS orbits. The black dashed line indicates 
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GEO graveyard altitude while the grey dotted line shows the approximate lunar orbit distance, for 

reference. 

 

Figure 17. Exterior (left) and interior (right) lunar encounters for single lunar swingby 

trajectories shown in Moon TOD frame 

 

Figure 18. Altitude above Earth mean sphere for exterior (top) and interior (bottom) sin-

gle lunar swingby trajectories 

Summary Results 

Figure 19 compares the LGrA1 and LGrA2 altitudes for the 1LS and 2LS orbits. The 1LS orbits, 

by definition, only have a single fly-by that is shown with LGrA1 for the 2LS orbits.  
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Figure 19. LGrA1 (left) and LGrA2 (right) altitudes for 1LS and 2LS orbit families 

All comparison plots use the cislunar time-of-flight, defined as the duration from launch (or 

separation) to the first perigee at GEO radius, as the horizontal axis. For both the 1LS and 2LS 

orbits, the orbit lowering (PRM) phase is a nearly constant duration and can be neglected for com-

parison purposes. The horizontal axis shows the significantly longer duration, ~90-130 days, of the 

2LS long-period orbits. The 1LS orbits have the shortest cislunar time-of-flight from ~10-30 days. 

For LGrA1, the 1LS orbits launched in May exhibit a much greater range of swingby altitudes than 

the 2LS orbits. For all orbits, LGrA1 is below ~20,000 km.  

Figure 20 shows the required ΔV during the cislunar phase and for the entire trajectory (includ-

ing orbit lowering). Since the 1LS trajectories are ballistic and targeted from launch, they require 

no cislunar ΔV. The 1LS data points shown on the right panel represent the ΔV required for orbit 

lowering only.  

 

Figure 20. Cislunar (left) and total (right) ΔV required for 1LS and 2LS orbit families 

Figure 20 demonstrates that the majority of ΔV required for any lunar swingby to GEO trajec-

tory comes from the orbit lowering rather than the cislunar phase. All trajectories require >1 km/s 
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ΔV to reduce semi-major axis and insert into GEO graveyard. This reality stems from the required 

apogee altitude to set up the lunar encounter. The ΔV to reach lunar distance is provided by the 

launch vehicle but the spacecraft must have sufficient ΔV to reduce energy down to GEO. Variation 

in the orbit lowering ΔV is caused by varying post-LGrA1 semi-major axes. The additional ΔV 

required for cislunar phase maneuvers ranges from ~20-90 m/s across all 2LS orbits. On average, 

the short-period orbits require more ΔV than the long-period.  

Finally, Figure 21 shows the maximum and minimum altitudes for both 1LS and 2LS orbit 

families. The minimum altitude is computed after 5 days to eliminate the outgoing leg of both 

trajectory families. 

 

Figure 21. Maximum (left) and minimum (right) altitudes for 1LS and 2LS orbit families 

As expected, the long-period 2LS orbits have by far the greatest maximum altitude. The short-

period 2LS orbits are enveloped by the range of 1LS orbits maximum altitude. This illustrates the 

key difference in terms of communication link requirements between the short- and long-period 

2LS orbits. Pivoting from a 1LS or short-period 2LS orbit to the long-period 2LS orbit imposes the 

requirement to communicate at approximately double the range (~1.2M km vs. ~600,000 km).  

The altitude range for 1LS and long-period 2LS orbits is the GEO graveyard altitude. This in-

dicates that neither of these trajectory families pass below the GEO belt after the outbound leg 

(launch to LGrA1). The short-period 2LS orbits have minimum altitudes between ~15,000-25,000 

km, below GEO and the approximate upper limit of the outer Van Allen Belts. This undesirable 

feature counterbalances the shorter time-of-flight of the short-period orbits.  

DISCUSSION 

The existence of short- and long-period double lunar swingby orbits that meet mission require-

ments demonstrates that this class of trajectory is an option for GEO payloads launched as 

rideshares with lunar missions. Between the scarcity of GTO launches and the increasing frequency 

of lunar payload launches, operators may find lunar rideshare a more viable option for delivering 

secondary payloads to GEO or near-GEO. In that case, the ability to mitigate sub-optimal lunar 

encounter geometry becomes critical. The requirements and constraints driving lunar orbiter or 

lunar lander launch targeting are dissimilar from those driving a swingby-to-GEO mission. Multi-

gravity-assist trajectories that deliver the payload to the same final orbit state increase compatibility 
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with rideshare opportunities and reduce the likelihood of changes in the primary payload’s launch 

targets interfering with the secondary payload’s trajectory.  

Between the short- and long-period double lunar swingby orbits, the short-period orbits are at-

tractive for their short time-of-flight and lower maximum altitude. Unfortunately, the short-period 

orbits for April and May launch opportunities have multiple perigees below GEO and within the 

Van Allen Belts. Furthermore, a maneuver is required in this region, precluding some common 

radiation mitigation options. Should potential GEO interference or increased radiation exposure 

not be a concern for a given spacecraft or payload, the short-period orbits may be a viable option. 

The long-period double lunar swingby orbits eliminate the perigee maneuver by using LGrA1 

to increase apogee and performing the SPM at this high-altitude apogee. While avoiding the Van 

Allen Belts and potential GEO conflicts, the long-period orbits do require communication in the 

vicinity of Sun-Earth L2 and a significantly longer time of operation in deep space.  

As expected, all double lunar swingby orbits exhibit longer time-of-flight than single swingby 

orbits. In general, missions sensitive to time-of-flight would select the single double swingby over 

the double swingby orbits. However, for rideshare missions manifested with a given primary pay-

load, the double lunar swingby orbits may enable successful transfers to GEO where a single lunar 

swingby cannot. 

CONCLUSION  

SEE developed double lunar swingby trajectories from a lunar rideshare launch to the GEO 

graveyard. Both short-period and long-period solutions exist, offering a trade-off between maneu-

ver complexity, time-of-flight, and maximum spacecraft-to-Earth range. The required ΔV for these 

solutions compares favorably with idealized single lunar swingby trajectories. Double lunar 

swingby orbits create opportunities for GEO missions to rideshare with lunar payloads. Further 

development of these trajectories will require evaluating the sensitivity of both LGrAs to navigation 

and maneuver execution errors. From these results, the magnitude of statistical trajectory correction 

maneuvers (TCMs), unmodeled in this analysis, can be estimated.  
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